"Why Climate Modelers Should Worry about Atmospheric and Oceanic Weather"
by B. Kirtman and G.A. Vecchi

Changing oceanic conditions, as manifest through sea surface temperature (SST), can
influence atmospheric circulation through a variety of processes, largely by changing
enthalpy fluxes across the surface. Thus, sea surface temperature (SST) anomalies play
an important role in atmospheric variability and predictability (Charney and Shukla 1981;
Shukla 1998; Trenberth et al. 1998; Kang et al 2002, Wang and Zhang 2002, Wang et al
2004). However, atmospheric variability exists that is independent of SST forcing. Both
forced and internal aspects of atmospheric climate variability impact oceanic conditions,
both through local momentum, freshwater and enthalpy fluxes, and through the remote
response of oceanic circulation via wave modes — some of these oceanic changes further
impact atmospheric conditions — including those in the monsoon regions (e.g., Vecchi
and Harrison 2000; Vecchi et al. 2006). Describing, understanding and representing the
coupled interactions between the two fluid systems is a major focus of the scientific
community, both as a source of predictability of climate conditions around the world, on
a variety of time- and space-scales, and as a basic scientific research problem. For
example, Hendon (2003) showed that seasonally varying air-sea interactions, particularly
associated with latent heat flux were critical to interannual Indian Ocean SST anomalies
and Indonesian rainfall. The importance of air-sea heat exchanges in the Indo-Pacific
region in terms of capturing the monsoon variability was also noted by Krishna Kumar et
al. (2005), Wu and Kirtman (2007), Wu and Kirtman (2005), Wu et al. (2006), Wang et
al. (2003, 2005), Kucharshki et al. (2007), Bracco et al. 2007, Vecchi and Harrison 2004,
and Lau and Nath (2000, 2003, 2004). Observed and simulated Indian Ocean SST
variability and its relationship with the monsoon has also received considerable attention
in recent years (e.g., Krishnamurty and Kirtman 2003, Xie et al 2002, , Annamalai et al
2003, Behera et al 2000, Huang and Kinter 2002, Song et al 2007, Izuka et al 2000, Jin
and An 1999, Li et al 2002, Murtugudde and Busalacchi 1999, Murtugudde et al 2000,
Saji et al 1999, Webster et al. 1999). There have also been simulations and observational
studies demonstrating the role of Atlantic and Pacific Ocean variability on the Indian
Ocean monsoon system (e.g., Kucharski et al. 2008; Shinoda et al. 2004). A detailed
discussion of Indo-Pacific variability and its relationship with the monsoon can be found
in the review article by Webster et al. (1998).

Simulations of atmospheric general circulation models (AGCMs) forced by prescribed
SSTs (either observed or idealized in order to isolate particular mechanisms) allow us to
assess aspects of the SST control on climate variability, and exploit this atmospheric
response to SST anomalies for predictive purposes and to increase our understanding of



the climate system. However, AGCM experiments forced by observed SST show both
consistencies with and discrepancies from observations (e.g., Sperber and Palmer 1996;
Kumar and Hoerling 1998; Kang et al. 2002; Wang et al. 2004). In addition to
fundamental predictability limitations arising directly from internal atmospheric
dynamics, two major reasons for the model-observation discrepancies are: (1) the biases
in the model physics and (2) the lack of air—sea coupling in the forced simulations. The
discrepancies due to (1) are model dependent and can be reduced with the improvement
in the representation of atmospheric physical processes in the model. The discrepancies
due to (2) are fundamental and common to all of the forced simulations, and arise
because some SST features are actually the result of atmospheric conditions that arise
due to either remote SST forcing or internal atmospheric dynamics independent of SST
changes: the SST used as a forcing in some conditions is actually a response. In turn,
using these SST anomalies that are forced by the observed atmosphere as prescribed SST
in uncoupled atmospheric model simulation can result in improper local air-sea
relationships in some regions resulting in unrealistic atmospheric variability (Saravanan
1998; Saravanan and McWilliams 1998; Bretherton and Battisti 2000; Wang et al. 2004,
2005; Krishna Kumar et al. 2005; Trenberth and Shea 2005; Wu et al. 2006). Some
discrepancies due to the lack of air—sea coupling have been demonstrated in previous
studies (Roebber et al. 1997; Barsugli and Battisti 1998; Wittenberg and Anderson 1998;
Wu and Kirtman 2005).

To illustrate an aspect of discrepancy (2), Figure 1 shows that even the interannual
correlation of seasonal SST and evaporation anomalies can differ in various regions
around the tropics, when comparing SST-forced and coupled climate integrations using
the same atmospheric component. There are substantial regions of negative correlation in
the coupled climate model, indicating regions where enhanced evaporation is associated
with cool conditions, while the correlation tends to be more positive in the AGCM, as
warm conditions tend to favor evaporation in an SST-forced framework. The reader is
also referred to Figure (top left panel) where we show the same correlation based on
observational estimates. The observational estimates indicate significant regions of
negative correlation that are either complete absent on the AGCM forced simulation or
are weaker than observed in the CGCM simulations.

When and where the discrepancies due to the lack of air—sea coupling occur depends on
what causes the SST anomalies. In the case that the local SST anomalies are primarily
due to internal oceanic processes, it is likely that the forced simulations can capture the
observed atmospheric variability. This is the case in the tropical central and eastern
Pacific where the observed SST anomalies are mainly due to oceanic processes with
surface heat fluxes mainly acting as a damping effect (e.g., Jin and An 1999; Kang et al.



2001) and SST forced simulations perform well (e.g., Kumar and Hoerling 1998; Kang et
al. 2002; Wang et al. 2004). In the case that the observed SST anomalies are largely due
to atmospheric forcing, erroneous atmospheric response can result in the specified SST
simulations. This occurs in the extratropics and the tropical Indo-western Pacific Ocean
regions where the atmospheric forcing plays an important role in inducing SST anomalies
(e.g., Lau and Nath 1996; Alexander et al. 2002; Lau and Nath 2000, 2003; Wang et al.
2003; Krishnamurthy and Kirtman 2003). In these regions, the forced simulations deviate
from observations (e.g., Sperber and Palmer 1996; Wang et al. 2004; Wu et al. 2006) and
coupled model simulations (e.g., Kitoh and Arakawa 1999; Wu and Kirtman 2005; Wu et
al. 2006). We focus on the western tropical Pacific in more detail below and show how
the air-sea feedbacks in the western Pacific ultimately impact the remote ENSO
variability in coupled models.

The nature of local air—sea interaction can be understood from the evolution of lag—lead
correlation between the atmospheric variables and SST (von Storch 2000; Wu et al.
2006). Using a simple stochastic model, Barsugli and Battisti (1998) identified distinct
lagged linear regression between sea and air temperature for coupled and uncoupled
cases. von Storch (2000) provided a conceptual interpretation of how the different shapes
of lag cross-correlations relate to different forcing-response relationships. The author
identified very different evolution of the lag correlation between surface heat flux and
SST in the mid-latitude North Pacific and the equatorial central Pacific. Wu and Kirtman
(2005) demonstrated that the local lag—lead correlation between SST, rainfall, and
surface evaporation can indicate an atmospheric negative feedback in the coupled model.
The analysis of lag—lead correlations has been used to understand the atmosphere—ocean
relationship in observations and models (Frankignoul et al. 1998; von Storch 2000;
Frankignoul and Kestenare 2002; Frankignoul et al. 2002; Frankignoul et al. 2004; Kitoh
and Arakawa 1999; Wang et al. 2005; Wu and Kirtman 2005; Wu et al. 2006). However,
because atmosphere-ocean interactions are seasonally dependent (e.g., Hendon 2003;
Wang et al. 2003), it is not so simple to analyze the lag—lead correlations.

Another way to reveal the air—sea relationship is to combine simultaneous atmosphere—
SST and atmosphere—SST tendency correlations (Wu et al. 2006). SST anomalies can
induce anomalous convection through surface evaporation and low-level moisture
convergence. Because the atmospheric response to SST forcing is relatively fast, a large
positive simultaneous correlation, for example, between rainfall and SST may indicate
that the SST is forcing the atmosphere. On the other hand, anomalous atmospheric
convection can change the SST through cloud-radiation and wind-evaporation effects and
wind-induced oceanic mixing and upwelling. These atmospheric feedbacks can be
detected in the SST tendency. Thus, the magnitude of simultaneous rainfall-SST and



rainfall-SST tendency correlations can indicate the relative importance of SST forcing
and atmospheric forcing. Wu and Kirtman (2005) showed that in regions where the
atmosphere has a strong negative feedback on SST (e.g., tropical western North Pacific in
boreal summer and tropical southwestern Indian Ocean in austral summer), the negative
rainfall-SST tendency correlation is larger than the rainfall-SST correlation. This differs
from the equatorial central-eastern Pacific where the positive rainfall-SST correlation is
much larger than the rainfall-SST tendency correlation. Using simple model simulations,
Wu et al. (2006) demonstrated that the surface turbulent heat flux-SST/SST tendency
correlation displays marked differences for the case when atmospheric forcing dominates
versus when SST forcing dominates. An analysis of heat flux—SST tendency correlation
has been performed to identify the atmospheric forcing of SST in the North Pacific (e.g.,
Cayan 1992) and in the tropical Indo-western Pacific Ocean regions (e.g., Wu and
Kirtman 2005; Wu et al. 2006).

The importance of accurately capturing the western Pacific air-sea feedbacks correctly
(or the implications of failing to capture these feedbacks) is exemplified in Fig. 2, which
shows an example from several models participating in the Intergovernmental Panel on
Climate Change (IPCC) Assessment Report four (AR4). In this figure we have plotted
the spatial pattern of the first Empirical Orthogonal Function (EOF1) of the SST anomaly
in the equator in the Pacific from five different state-of-the-art coupled models and
observational estimates. All of the coupled models shown here have dominant ENSO
modes that extend too far to the west. Often, but not always, the models have ENSO
periodicities that are too fast compared to observations. The conventional wisdom is that
the westward extension of the ENSO events and the fast periodicity is due to the cold
tongue mean state errors. Simply, errors in the mean state are the cause for the errors in
the anomalies. Here we suggest that the errors in the simulated ENSO are due to errors in
the statistics of the tropical atmospheric weather and the associated air-sea feedback in
the western Pacific. In other words, if there are large errors in the simulation of the
weather statistics in the western Pacific and the associated air-sea feedbacks, then the
climate simulation is seriously degraded.

The theoretical coupled model presented in Wu et al. (2006) suggests that the source of
the western Pacific problem is due to incorrect latent heat flux — SST feedbacks, and the
theory suggest a potential solution. Wu et al. (2006) show that when the correlation
between the latent heat flux (our convention here is that latent heat flux is positive
upward) and SST anomalies is strongly negative, the SST variability can be viewed as
strongly forced by atmospheric variability (noise). Conversely, when the ocean forcing
dominates the correlation is positive. Figure 3 (in part taken from Wu et al. 2006) shows
this correlation from satellite based observational estimates (top left) and the COLA



anomaly coupled model (bottom left; Kirtman et al. 2002). Clearly, near the equator in
the western Pacific the coupled model fails to capture the observed relationship. This is
also true in significant regions of the tropical Indian and Atlantic Oceans. Similar errors
have been identified with CFS (e.g., Wu et al. 2007) and with CCSM3 (not shown). The
theoretical model suggests two possible interpretations of this result: (a) the ocean is too
strongly forcing the atmosphere or (b) the atmosphere is not forcing the ocean enough.
Wu et al. (2006) describes the theoretical basis for these possible interpretations.

In the case of the atmosphere forcing the ocean, the theoretical model of Wu et al. (2006)
adopted from Barsugli and Battisti (1998) is as follows:

a
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In the above, T, and T, refer to air and sea temperature, respectively. Air-sea heat flux
(latent and sensible) is represented by the air-sea temperature difference, N, represents
atmospheric white noise forcing and o and [3 are exchange coefficients. This theoretical
model implies a negative contemporaneous correlation between the atmosphere and the
ocean. In contrast, Wu et al. (2006) also present a simple theoretical model for the ocean
forcing the atmosphere, e.g.,
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In this case, N, represent oceanic forcing of the atmosphere and the air-sea correlation in
positive.

The theoretical model described above also suggests a possible solution to this air-sea
feedback problem, namely we need to change the relative strength of the atmosphere
forcing of the ocean or the ocean forcing of the atmosphere. In other words, we can
simply modify N, or N, to change the air-sea correlation. We present here an ad-hoc
preliminary attempt at modifying the relative forcing strength. Here we modify the
effective N, in the CGCM by simply add Gaussian white noise (in both space and time)
to the latent heat flux that is used to force the ocean. In this test, the noise amplitude is
arbitrarily chosen to be 15% of the day-to-day variance produced by a control run of the



model and is only applied in the far western Pacific (SN-5S, 120E-160E). This Gaussian
white noise forcing was applied to a 100-yr simulation of the COLA anomaly coupled
model. The resulting correlation is also shown in Fig. 3 (top right). As predicted by the
theoretical model, the correlation has changed sign in the western Pacific. We emphasize
that this is more than simply reducing the amplitude of the correlation — it has actually
changed sign. The entire ENSO system in this simulation has shifted further to the east
with a consistent increase in the periodicity. This suggests the air-sea physics in the
western Pacific can have a profound impact on the ENSO simulation. This impact is
more than merely making the ENSO more irregular; it is shifting the system eastward
modifying the oceanic time-scales (via wave dynamics) and even modifying the global
teleconnections by shifting the region of maximum rainfall anomalies to the east. The
changes in the periodicity and the eastward shift of the variability can easily be detected
in Fig. 4, which shows the lag-lead regression of Nino3.4 SSTA onto equatorial Pacific
SSTA. In essence, adding noise in the western Pacific heat flux has modified the coupled
signal without explicit changes to either the atmospheric or oceanic component model.

Another possible solution to the problem is to restrict the uncoupled SST forcing of the
atmospheric model to a region where SST can be largely be considered a local forcing
(e.g., the eastern and central equatorial Pacific Ocean), and allowing the atmospheric
model to couple to a thermodynamically or dynamically active oceanic model elsewhere.
Model configurations of this type have been used to explore the response of the monsoon
and midlatitude climate systems to forcing from various tropical basins (e.g., Alexander
et al 2002, Lau and Nath 1996, 2000, 2003, 2004, Bracco et al. 2007), and to explore the
impact of decadal oceanic variations in the Atlantic on global climate conditions (e.g.,
Zhang et al. 2007).

While the previous discussion has largely focused on large-scale errors arising from
inadequate coupling — largely arising due to internal atmospheric variability, it is
interesting to briefly consider the possibility of analogous issues on the oceanic
mesoscale, arising from internal oceanic variability. There is now considerable evidence
that the sharp SST gradients induced by oceanic mesoscale features (e.g., upwelling
filaments, eddies, tropical instability waves, sharp fronts, warm western boundary
currents, etc) can drive changes in the atmosphere, through local air-sea interaction (e.g.,
Chelton et al. 2001, 2004, 2005, 2007; Hashizume et al. 2001; Xie 2004; Vecchi et al.
2004; Seo et al. 2007, 2008; Minobe et al. 2008, Small et al. 2008). These atmospheric
changes on the oceanic mesoscale result in variations to the enthalpy and momentum
fluxes of sufficient magnitude to impact the oceanic structures that drove them (e.g.,
Chelton et al. 2005, Vecchi et al. 2004, Seo et al. 2007, 2008). Thus, in order to correctly



represent the physical processes behind these oceanic mesoscale features, one may be
required to correctly represent the impact of this air-sea coupling. However, high-
resolution ocean models are generally forced by winds from either global analysis
products (like ECMWF and NCEP) or by winds derived from satellite scatterometry
(such as NSCAT or QuickSCAT). Wind from the global analyses do not include features
on the oceanic mesoscale, so the effects of this coupling will be absent from a forced
experiment, while scatterometer winds include the impacts of coupling that correspond to
the internal oceanic structures present in the real world, which need not correspond to
those in the model. Thus, as eddy-permitting and eddy-resolving models continue to be
developed and implemented in climate-scale integrations, solutions to — perhaps
analogous to those discussed above —the problem of inadequately representing air-sea
interactions on the oceanic mesoscale must be explored and developed.

Dynamical numerical modeling systems are an essential tool in describing,
understanding, representing and predicting the atmospheric and oceanic conditions of the
global climate system, including those in the monsoonal regions of the world. Boundary-
forced configurations of these models can represent many aspects of the variations of the
ocean and atmosphere climate system, but discrepancies can arise from incorrectly
specifying the boundary values as a forcing, when they are actually largely a response to
variations in the system one is modeling. Solutions to this problem have been and should
continue to be developed, and modelers should be keenly aware of these potential
problems.
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Correlation of Local Surface Temperature and Local Evaporation (1901-2000)
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Figure 1: Correlation of seasonal-mean SST anomalies and evaporation anomalies from
SST-forced AGCM (upper panels) and coupled climate model (lower panels) integrations
over a 100-year period. The two model systems share the same atmospheric component.
The atmospheric component is the finite volume version of the GFDL atmospheric model
(AM2.1; GAMDT 2005, Lin et al 2006), and the coupled model is a version of the GFDL
coupled climate model (CM2.1; Delworth et al. 2006, Gnanadesikan et al. 2006,
Stouffer et al. 2006, Wittenberg et al. 2006, Song et al. 2006).



The 1st EOF mode of SSTA
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Figure 2: SSTA EOFs calculated from various coupled model intercomparison project
simulations (CMIP3). The domain plotted corresponds to the domain of the EOF
calculation. In each figure 100-years of data was used from simulation with fixed climate
forcing at 1990 levels.



Contemporaneous Latent Heat Flux - SST Correlation
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Figure 3: Contemporaneous correlation between latent heat flux anomalies (positive
upward) and SST anomalies based on observational (top left) estimates from version 2 of
the Goddard Satellite-Based Turbulence Fluxes (GFSST2) data, the COLA coupled
model simulation (bottom left) and the COLA model forced with Gaussian white noise in
the latent heat flux in the western Pacific (top right).



Noise Forcing Control
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Nino34 Regression on Equatorial Pacific SSTA

Figure 4: Lag-lead regression between Nino3.4 SSTA and equatorial Pacific SSTA. The
left panel corresponds to the noise forcing experiment and the control is shown in the
right panel. The contour interval is the same for both panels and starts at £0.2. The lags
and leads noted on the left of each panel are in years.



